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A multiplanar model for the pore radius
distribution in isotropic near-planar stochastic
fibre networks
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A model is presented for the pore radius distribution in isotropic near-planar stochastic
fibre networks. At a given areal density, the mean pore radius of two-dimensional random
networks is shown to decrease with increasing fibre width and to increase with increasing
fibre linear density.

For structures with a structural component in the third dimension the standard deviation
of pore radii is shown to be proportional to the mean for changes in areal density and
porosity in agreement with data reported in the literature. At a given porosity, near-planar
networks exhibit an increase in mean pore radius with increasing fibre width and linear
density. C© 2003 Kluwer Academic Publishers

1. Introduction
There have been many studies of the structure of web
or sheet-like stochastic fibrous networks such as filter
media, paper and non-woven fabrics; a recent review of
these is given by Sampson [1]. The maximum dimen-
sion of such materials perpendicular to their plane is
typically only a fraction of a fibre length; they are clas-
sified as ‘near-planar’ networks since a characteristic of
their structure is that it is essentially layered with fibre
axes oriented within only a few degrees of the network
plane [2].

Many workers have considered the statistical geom-
etry of two-dimensional random fibre networks; such
structures have fibre centres positioned according to a
point Poisson process in two dimensions and the major
axes of fibres have a uniform distribution of orienta-
tions. Miles [3] showed that the expected number of
sides per polygon was four and this was subsequently
verified in a simulation study [4]. Building on the work
of Miles, Corte and Lloyd [5] derived the probability
density of pore radii in a random network of lines. For
such networks, Corte and Lloyd [5] showed that the
standard deviation of pore radii is proportional to the
mean pore radius such that the coefficient of variation
of pore radii is

√
16 − π2/π .

Commercially formed fibre networks exhibit depar-
tures from randomness due to interactions between fi-
bres and hydrodynamic effects during manufacture. We
term the mass per unit area of a fibre network its areal
density; the distribution of local averages of areal den-
sity is known analytically for the random case [6] and at
scales around the length of a fibre, industrially formed
networks always exhibit a broader distribution than that
determined for a random network of the same fibres
[1, 7]. The pore radius distribution for such ‘clumped’

networks was derived by Dodson and Sampson and
shown to be well approximated by a gamma distribu-
tion [8]. Note also that the gamma distribution has been
used to describe the pore radius distribution in fibrous
filters [9–11] and nonwoven fabrics [12].

Recent experimental studies of the structure of paper,
arguably the most widely used near-planar stochastic
fibre network, have demonstrated the suitability of the
gamma distribution to describe its pore radius distribu-
tion [13–15]. For fibres of similar width, networks with
a range of areal densities and degrees of fibre clumping
exhibited proportionality between the standard devia-
tion of pore radii and the mean pore radius. The gradient
of such plots represents the coefficient of variation of
pore radii and for the data presented in [13–15] this
was always less than that given by Corte and Lloyd [5]
for two-dimensional random networks. This observa-
tion is interesting because the coefficient of variation
of local areal density of these networks was greater than
that calculated for a random network. Accordingly we
see that the structure of the void space is apparently
more uniform than a random network whilst its com-
plement, the distribution of mass, is less uniform. This
discrepancy probably arises from the fact that the pore
radius distribution is calculated indirectly as that of a
system of parallel capillaries exhibiting the same flow
characteristics as the sample being tested, whereas the
mass distribution is measured more-or-less directly us-
ing calibrated β-radiography.

Here we consider first the statistical geometry of two-
dimensional random fibre networks and derive their
mean pore radius extending the work of Corte and Lloyd
to incorporate the influence of fibre width. Since real fi-
bre networks have an appreciable structural component
in the third dimension, we consider the superposition
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of two-dimensional networks to form multiplanar struc-
tures. The probability density of pore radii in such struc-
tures is derived and used to predict the influence of fibre
geometries and network characteristics on the pore ra-
dius distribution.

2. Two dimensions
Kallmes and Corte [16] considered a two-dimensional
random network of fibres with aspect ratio A, and de-
fined this as a network where less than 1% of the area
is covered by more than two fibres. The expected num-
ber of crossings per fibre in such a network is given by
Kallmes and Corte [16] as

n̄cross = 2c̄A

π
(1)

where c̄ is the expected number of fibres covering a
point or the mean coverage of a layer and is given by
the ratio of the mean areal density of the layer to that
of the fibres.

For fibres of mean length λ̄ (m) and width ω (m) we
have A = λ̄/ω and the expected free fibre length be-
tween crossings is,

ḡ = λ̄

n̄cross
− ω for n̄cross � 1 (2)

=
( π

2c̄
− 1

)
ω. (3)

In many thermoplastic bonded polymer networks, small
beads of adhesive polymer are often observed at cross-
ings; we expect that these will effectively widen fibres
at such crossings thereby slightly reducing the mean
free fibre length between crossings. Such effects are
likely to be small and will not be considered further
here.

Now, Corte and Lloyd [5] give the mean pore radius
of a two-dimensional random fibre network as

r̄ =
√

π

4
ḡ. (4)

and substitution of Equation 3 in 4 yields,

r̄ =
√

π

4

( π

2c̄
− 1

)
ω. (5)

We consider fibres in terms of their width since many
natural fibres do not have circular cross-section and
are prone to collapse upon subjection to mechanical
action. For fibres of circular cross section, the width
is equivalent to the diameter. The mean coverage, c̄ is
dependent on fibre width such that

c̄ = β̄2Dω

δ
(6)

where β̄2D is the areal density of a layer and δ is linear
density of fibres (gm−1).

Substitution of Equation 6 in 5 and rearranging yields

r̄ = π
3
2 δ

8β̄2D
−

√
πω

4
(7)

Equation 7 gives for the first time the influence of fi-
bre width on the mean pore radius in two-dimensional
random fibre networks. As such it allows us to quan-
tify the effect of transverse fibre collapse on the mean
pore radius in a thin network. In an industrial context,
such collapse is common in the processing of natural
fibres prior to the manufacture of paper and during pa-
permaking pressing and drying operations. Assuming
the linear density and mean network areal density to be
constant, then the effect of increasing fibre width by 	ω

is to reduce the mean pore radius of a two-dimensional
structure by

√
π	ω/4 ≈ 0.44	ω.

The surface representing the mean pore radius in
units of fibre width for a two-dimensional network of
mean areal density 1.5 gm−2 is plotted for the range of
fibre widths and linear densities typical of wood pulp
fibres in Fig. 1. For fibres of circular cross section of
diameter ω, the linear density is given by,

δ = πω2

4
ρ (8)

where ρ is the density of the fibre. Substitution of
Equation 8 into Equation 7 yields

r̄ = π
5
2 ρω2

32β̄2D
−

√
πω

4
(9)

such that when ω has units of µm, β2D has units of gm−2

and ρ is entered as a specific gravity, r̄ has units of µm.
Equation 9 is suitable for calculation of the mean pore
radius in thin networks of, for example, glass, metal,
carbon and synthetic polymer fibres of known density
and diameter.

Typically we expect the porosity of near-planar
stochastic networks such as fibrous filters to be approx-
imately uniform in the z-direction. The main excep-
tion to this occurs when there are significant quanti-
ties of fibre fragments of small aspect ratio that result
from fibre processing operations or when non-fibrous

Figure 1 Mean pore radius in a layer in units of fibre width as a function
of fibre width and linear density. Surface generated for a layer of areal
density 1.5 gm−2.
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Figure 2 Mean pore radius in a layer in units of fibre width as a function
of porosity.

additives such as minerals are added as in the man-
ufacture of some paper grades. For networks formed
from synthetic or glass fibres, such as those used in
fibre reinforced composites and for nonwoven fabrics
and glass fibre filters, these small particles are largely
absent. Accordingly, we define the mean areal density
of a two-dimensional network to be that where the frac-
tional open area is equal to the porosity of a near-planar
network. For a random network of fibres, the fractional
open area is given by the Poisson probability that the
coverage is zero such that,

P(0) = ε = e−c̄ (10)

ε = e−ωβ̄2D
δ , (11)

and hence,

β̄2D = − δ

ω
log(ε). (12)

Substitution of Equation 12 in 7 yields

r̄ = −
√

π

4

(
1 + π

2 log(ε)

)
ω for e−π/2 ≤ ε < 1

(13)
the lower limit of the applicable range of ε being ap-
proximately 0.2. The mean pore radius as given by
Equation 13 is plotted in units of fibre width in Fig. 2.
Noting that the function is very sensitive as ε → 1,
we observe that for ε greater than 0.993, the mean pore
radius is more than 100 fibre widths. Since the aspect
ratio of most natural fibres is of order 50 to 200, then
we may consider Equation 13 to be yielding estimates
of the mean pore radius of the right order of magnitude.

3. Multiplanar structures
Consider a layered structure of circular voids with
gamma distributed radii. The probability density func-
tion and cumulative distribution function for pore radii
in a single layer are given by,

f (r ) = bk

�(k)
rk−1e−br , (14)

g(r ) = 1 − �(k, br )

�(k)
, (15)

where �(a, z) is the incomplete gamma function. The
distribution given by Equations 14 and 15 has mean,
r̄ = k/b; variance, σ 2(r ) = k/b2 and coefficient of
variation, CV (r ) = 1/

√
k.

A second layer with an independent and identical
distribution of pore radii is placed over the first layer
such that the centres of pairs of voids in the two layers
are aligned. For such a structure, we assign to each pair
of pores the radius of the smaller pore such that we
consider effectively the radii of pore bottlenecks. The
probability density of radii of pore bottlenecks is given
by,

f (r, 2) = 2(1 − g(r )) f (r ),

= 2
�(k, br )

�(k)
f (r ). (16)

The cumulative distribution function for two layers is

g(r, 2) = 1 − �(k, br )2

�(k)2
, (17)

Applying the same notation, the addition of further
layers gives us

f (r, 3) = 3(1 − g(r, 2)) f (r ) = 3

(
�(k, br )

�(k)

)2

f (r )

g(r, 3) = 1 − �(k, br )3

�(k)3
,

f (r, 4) = 4(1 − g(r, 3)) f (r ) = 4

(
�(k, br )

�(k)

)3

f (r ),

g(r, 4) = 1 − �(k, br )4

�(k)4
,

etc. So, for a structure composed of n layers we
have the general expressions for the probability den-
sity and cumulative distribution functions of pore radii
respectively:

f (r, n) = n

(
�(k, br )

�(k)

)n−1

f (r ), (18)

g(r, n) = 1 −
(

�(k, br )

�(k)

)n

. (19)

4. Tortuosity
Now, the void structure of stochastic fibre networks is
highly interconnected and tortuous. The tortuosity, τ

of a given path through a stochastic porous medium
is given by the reciprocal of the porosity [17], i.e.,
τ = 1/ε. We account for tortuosity by considering
the void structure to be isotropic in three-dimensions.
As the path through a network becomes more tortuous,
so the probability of bottlenecks increases; accordingly,
the number of layers is weighted to increase the proba-
bility of bottlenecks such that n �→ n/ε. So, accounting
for tortuosity, the probability density and cumulative
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distribution functions of pore radii are given by,

f (r, n, ε) = n

ε

(
�(k, br )

�(k)

) n
ε −1

f (r ) (20)

g(r, n, ε) = 1 −
(

�(k, br )

�(k)

) n
ε

, (21)

respectively. The mean and variance of pore radii for a
structure consisting of n layers are determined by,

rn =
∫ ∞

0
r f (r, n, ε) . dr

σ 2(rn) =
∫ ∞

0
r2 f (r, n, ε) . dr − rn

2

respectively, where the integrals must be determined by
numerical methods.

An analytic solution is possible for the special case
where k = 1, when the probability density of pore radii
in a single layer is negative exponential. This persists
to multiplanar structures such that

f (r, n, ε) = bn

ε
e− bn

ε , (22)

and the mean and standard deviation of pore radii are
equal and given by ε/(bn). Note that when k = 1 pa-
rameter b is given by the reciprocal of the mean pore
radius in a two-dimensional structure. Accordingly, for
negative exponential pore radii, the mean pore radius
of a multiplanar structure is given by that of a two-
dimensional network multiplied by the factor ε/n.

5. Outputs
We illustrate the application of the model by consider-
ing the pore size distribution of multiplanar structures
formed from fibres of width 30 µm and linear den-
sity 1.8 × 10−4 gm−1, these values being typical of a
softwood fibre. For small changes in the coefficient of
variation of pore radii in one layer we assume that the
mean pore radius is the same as that determined by
Equation 7 for random networks.

The effect of changing areal density is modelled by
increasing the number of layers in the network from
1 to 50 for structures formed from layers with poros-
ity 0.7 such that the areal density of a layer, as given
by Equation 12 was 2.14 gm−2. Computations have
been carried out for such structures with coefficient of
variation of pore radii in a single layer, CV (r, 1) =
0.6,

√
16 − π2/π and 0.9 such that we consider the

random case, i.e., CV (r, 1) = √
16 − π2/π ≈ 0.788,

and structures that are more and less uniform. The co-
efficient of variation of pore radii defines parameter k
for our calculations and, given k we compute b such
that k/b = r̄ as given by Equation 7. Results are shown
in Fig. 3 where the broken line represents the theo-
retical relationship given by Corte and Lloyd [5] for
two-dimensional random networks. We observe that the
standard deviation of pore radii is proportional to the
mean with an intercept close to the origin and this agrees

Figure 3 Standard deviation of pore radii plotted against mean pore
radius for changes in mean areal density.

with experimental observation [13, 18]. The gradient of
this proportionality is sensitive to the uniformity of a
single layer.

The effect of changing porosity has been determined
for networks of fibres with the same morphology con-
sidered above. The mean areal density of single layer
was determined using Equation 12 for 0.25 ≤ ε ≤ 0.9
for increments of porosity of 0.05 and the number of
such layers was allowed to vary such the mean areal
density of the network was constant at 60 gm−2. Data
are shown in Fig. 4 and again we observe that the stan-
dard deviation of pore radii is proportional to the mean
with intercept close to the origin.

Since the model is showing the standard deviation
of pore radii to be closely bound to the mean pore ra-
dius, in what follows the effect of variables on the pore
size distribution is discussed in terms of the mean pore
radius only.

The influence of fibre width on the mean pore radius
is shown in Fig. 5 for multiplanar networks of mean
areal density 60 gm−2 and porosity ε = 0.7 formed
from fibres of linear density δ = 2 × 10−4 gm−1. Curves
are shown for layers with coefficients of variation of
pore radii CV (r, 1) = 0.6, 0.788 and 0.9 as discussed
above. As observed in Figs 3 and 4 the mean pore radii
are smaller for multilayer structures formed from layers
with a higher coefficient of variation of pore radii. This
is to be expected since, at a given mean pore radius in
a layer, a broader distribution of pore radii increases
the probability of small pores and hence bottlenecks in

Figure 4 Standard deviation of pore radii plotted against mean pore
radius for changes in porosity.
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Figure 5 Mean pore radius plotted against fibre width for layers with
differing levels of uniformity. Curves plotted for networks of mean areal
density 60 gm−2 and porosity ε = 0.7 formed from fibres of linear density
δ = 2 × 10−4 gm−1.

the multiplanar structure. The effect of increasing fibre
width is to increase the mean pore radius, the effect
being greater for more uniform layers, i.e., those with
a lower coefficient of variation of pore radii.

Recall that for a two-dimensional structure,
Equation 7 shows that increasing fibre width decreases
pore radius when the areal density of a layer is con-
stant. From Equation 12 we observe however that the
areal density of a layer is inversely proportional to fibre
width. Accordingly, increasing fibre width reduces the
areal density of a layer and hence increases the num-
ber of layers required to form a multiplanar structure
of given areal density. The net effect of these changes
is an increase in mean pore radius with increasing fibre
width, as shown in Fig. 5.

The influence of the linear density of fibres on the
mean pore radius is shown in Fig. 6 for multiplanar
networks of mean areal density 60 gm−2 and porosity
ε = 0.7 formed from fibres of width ω = 30 µm. Since
increasing linear density reduces the number of fibres
per unit area required to form a network of given areal
density, we observe an increase in the mean pore radius
with increasing linear density.

Typically the width and linear density of natural fi-
bres are coupled such that increased linear densities are

Figure 6 Mean pore radius plotted against fibre linear density for layers
with differing levels of uniformity. Curves plotted for networks of mean
areal density 60 gm−2 and porosity, ε = 0.7 formed from fibres of width,
ω = 30 µm.

Figure 7 Mean pore radius plotted against fibre width for random layers
formed from fibres of different linear density. Curves plotted for networks
of mean areal density 60 gm−2 and porosity, ε = 0.7.

associated with increased width. Accordingly, the ef-
fect of linear density and width are shown together in
Fig. 7 for multiplanar structures formed from random
layers with mean areal density 60 gm−2 and porosity
ε = 0.7. For coupled linear density and width we can
expect the dependence of mean pore radius on width
to be greater than shown by the curves in Fig. 7 and to
map a monotonically increasing trajectory within the
envelope shown.

6. Real networks
The areal density and porosity of commercially formed
near-planar fibre networks such as paper and fibrous fil-
ter media are closely controlled during their manufac-
ture to meet product specifications. Such fibre networks
are typically formed by collapsing a three-dimensional
fibre suspension into a near-planar structure by a con-
tinuous filtration-type process. During such processes,
there is interaction between the structure that has been
formed and the fibres forming subsequent layers [19].
As mentioned previously, the processing of natural fi-
bres prior to papermaking generates a significant mass
fraction of fibre fragments and it has recently been
shown that these reduce the mean pore radius [15].

In accounting for tortuosity, the void structure of the
network has been assumed to be isotropic in three-
dimensions. We note the recent work of Huang et al.
[20] who present measurements of void dimensions
in the plane of the network and perpendicular to it
demonstrating three dimensional anisotropy in the di-
mensional characterisation of void space. Recent the-
ory [21], simulation studies [22] and experimental mea-
surements [23] suggest that the pore height, i.e., the pore
dimension perpendicular to the plane of the network is
described well by the negative exponential distribution.
This is important, since the negative exponential distri-
bution is a special case of the gamma distribution as
given by Equation 14 with k = 1. The pore height dis-
tribution is coupled with the mass distribution such that
the relationship between the distributions of local aver-
age areal density and local average thickness is bivariate
Normal [24, 25].

Future work will seek to incorporate the change in
pore radius distributions with orientation to the plane
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of the network to allow for this anisotropy. The ap-
plicability of the model to commercially formed fibre
networks will be tested against existing data character-
ising the porosity and pore radius distribution in real
networks [13, 15, 25].

7. Conclusions
A model has been presented for the pore radius distribu-
tion in near-planar stochastic fibre networks. At a given
areal density, the mean pore radius of two-dimensional
random networks is shown to decrease with increasing
fibre width and to increase with increasing fibre linear
density. For structures formed by the superposition of
such two-dimensional networks, the standard deviation
of pore radii is proportional to the mean for changes in
areal density and porosity; the gradient of proportion-
ality being dependent on the uniformity of a layer. At
a given porosity, such structures exhibit an increase in
mean pore radius with increasing fibre width and linear
density.
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